# A Singular Riesz Product in the Nevai Class and Inner Functions with the Schur Parameters in $\bigcap_{p>2} I^{p}$ 

Sergei Khrushchev<br>Dolgoozernaya ul. 6, Block 1, Apt. 116, 197373 St. Petersburg, Russia<br>Communicated by Paul Nevai<br>Received September 14, 1998; accepted June 2, 2000;<br>published online January 18, 2001<br>TO THE MEMORY OF TEACHER, FRIEND, AND CO-AUTHOR, STANISLAV ALEXANDROVICH VINOGRADOV

There exist singular Riesz products $d \sigma=\prod_{\kappa=1}^{\infty}\left(1+\operatorname{Re}\left(\alpha_{\kappa} \zeta^{n_{k}}\right)\right)$ on the unit circle $\mathbb{T}$ with the parameters $\left(a_{n}\right)_{n \geqslant 0}$ of orthogonal polynomials in $L^{2}(d \sigma)$ satisfying $\sum_{n=0}^{\infty}\left|a_{n}\right|^{p}<+\infty$ for every $p, p>2$. The Schur parameters of the inner factor of the Cauchy integral $\int_{\mathbb{T}}(\zeta-z)^{-1} d \sigma(\zeta), \sigma$ being such a Riesz product, belong to $\bigcap_{p>2} l^{p}$. © 2001 Academic Press
Key Words: Schur parameters; orthogonal polynomials; Blaschke product; Riesz products.

1. Given a probability measure $\sigma$ on $\mathbb{T}=\{\zeta:|\zeta|=1\}$ the orthogonal polynomials $\left(\varphi_{n}\right)_{n \geqslant 0}$ in $L^{2}(d \sigma)$ are defined by

$$
\begin{align*}
& \varphi_{n}(z)=k_{n} \cdot z^{n}+\cdots+\varphi_{n}(0), \quad k_{n}>0 \\
& \int_{\mathbb{T}} \varphi_{i} \bar{\varphi}_{j} d \sigma=\delta_{i j} \tag{1.1}
\end{align*}
$$

For a polynomial $p$ of degree $n$ in $z$ we put $p^{*}(z)=z^{n} \overline{p(1 / \bar{z})}$. It follows from the recurrence formulae (see [7])

$$
\begin{align*}
k_{n} \varphi_{n+1} & =k_{n+1} z \varphi_{n}+\varphi_{n+1}(0) \varphi_{n}^{*}  \tag{1.2}\\
k_{n} \varphi_{n+1}^{*} & =k_{n+1} \varphi_{n}^{*}+\overline{\varphi_{n+1}(0)} z \varphi_{n}
\end{align*}
$$

that the orthogonal polynomials are uniquely determined by their parameters $a_{n}=-\overline{\varphi_{n+1}(0)} / k_{n+1}, n=0,1, \ldots$. We call $\left(a_{n}\right)_{n \geqslant 0}$ the Geronimus parameters of $\sigma$.

The Herglotz formula

$$
\begin{equation*}
\int_{\pi} \frac{\zeta+z}{\zeta-z} d \sigma(\zeta)=\frac{1+z f}{1-z f}, \quad|z|<1, \tag{1.3}
\end{equation*}
$$

establishes a one-to-one correspondence between probability measures on $\mathbb{T}$ and contractive holomorphic functions in the unit disc $\mathbb{D}=\{z:|z|<1\}$, i.e., the points of the unit ball $\mathscr{B}$ of the Hardy algebra $H^{\infty}$.

For $f, f \in \mathscr{B}$, the Schur algorithm is defined by

$$
\begin{equation*}
f(z) \stackrel{\text { def }}{=} f_{0}(z)=\frac{z f_{1}(z)+\gamma_{0}}{1+\bar{\gamma}_{0} z f_{1}(z)} ; \ldots f_{n}(z)=\frac{z f_{n+1}(z)+\gamma_{n}}{1+\bar{\gamma}_{n} z f_{n+1}(z)} ; \ldots . \tag{1.4}
\end{equation*}
$$

If $f$ is not a finite Blaschke product then the sequence $\gamma_{n}=f_{n}(0), n=0,1, \ldots$, of the Schur parameters of $f$ is infinite.

Theorem (Geronimus [3, 4]). The Geronimus parameters of a probability measure $\sigma$ on $\mathbb{T}$ coincide with the Schur parameters of the function $f$ related with $\sigma$ by (1.3).

It is clear from (1.3) (take the real parts) and from Fatou's theorem on nontangential limits that $f$ is an inner function if and only if $\sigma$ is a singular measure. In addition $(1-z f)^{-1}$ is an outer function for every $f$ in $\mathscr{B}$. Subtracting 1 from the both sides of (1.3), we obtain that

$$
\begin{equation*}
\int_{\pi} \frac{d \sigma(\zeta)}{\zeta-z}=f(z) \cdot(1-z f)^{-1}, \quad|z|<1, \tag{1.5}
\end{equation*}
$$

is the canonical Nevanlinna factorization of the Cauchy integral of $\sigma$ into the product of the inner function $f$ and the outer function $(1-z f)^{-1}$.
2. The first example of a singular measure $\sigma$ with $\lim _{n} a_{n}=0$ was constructed by D. Lubinsky [6]. In the present paper we show that the Nevai class contains also singular Riesz products which are very close to measures satisfying the Szegő condition

$$
\begin{align*}
\prod_{n=0}^{\infty}\left(1-\left|a_{n}\right|^{2}\right) & =\exp \left\{\int_{\mathbb{T}} \log \left(\sigma^{\prime}\right) d m\right\}  \tag{2.1}\\
& =\exp \left\{\int_{\mathbb{T}} \log \left(1-|f|^{2}\right) d m\right\}>0
\end{align*}
$$

(see [2]). Notice that, by (2.1) $f$ cannot be an inner function if $\sum_{n=0}^{\infty}\left|\gamma_{n}\right|^{2}$ $<+\infty$.

We recall (see [8]) that a Riesz product is a probability measure $\sigma$ on $\mathbb{T}$ with the formal Fourier series defined by the infinite product

$$
\begin{equation*}
d \sigma \sim \prod_{\kappa=1}^{\infty}\left(1+\operatorname{Re}\left(\alpha_{\kappa} \zeta^{n_{\kappa}}\right)\right), \tag{2.2}
\end{equation*}
$$

where $0<\left|\alpha_{\kappa}\right| \leqslant 1, \kappa=1,2, \ldots$.
In what follows we assume that

$$
\begin{align*}
& n_{\kappa+1}>2\left(n_{\kappa}+n_{\kappa-1}+\cdots+n_{1}\right),  \tag{2.3}\\
& \sum_{\kappa=1}^{\infty}\left|\alpha_{\kappa}\right|^{2 p}<+\infty \quad \text { for every } p, p>1,  \tag{2.4}\\
& \sum_{\kappa=1}^{\infty}\left|\alpha_{k}\right|^{2}=+\infty . \tag{2.5}
\end{align*}
$$

Condition (2.3) says that every non-zero Fourier coefficient $\hat{\sigma}(\kappa), \kappa \neq 0$, is a product of a finite number of multipliers $\alpha_{j} / 2$ with different indices $j$. This together with (2.4) implies that $(\hat{\sigma}(\kappa))_{\kappa \in \mathbb{Z}} \in \bigcap_{p>2} l^{p}$. Condition (2.5) implies that $\sigma$ is a singular measure (see [8]).

Theorem 1. There exists a singular Riesz product $\sigma$ with the Geronimus parameters $\left(a_{n}\right)_{n \geqslant 0}$ satisfying

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|a_{n}\right|^{p}<+\infty \tag{2.6}
\end{equation*}
$$

for every $p, p>2$.
Proof. We construct the required measure in the class of Riesz products $\sigma$, satisfying (2.3)-(2.5), by specifying the growth of $n_{\kappa}$.

Suppose that the numbers $n_{1}, \ldots, n_{\kappa}$ are already choosen. The partial product

$$
\begin{equation*}
p_{\kappa}(\zeta)=\prod_{j=1}^{\kappa}\left(1+\operatorname{Re}\left(\alpha_{j} \zeta^{n_{j}}\right)\right), \quad \zeta \in \mathbb{T} \tag{2.7}
\end{equation*}
$$

is non-negative on $\mathbb{T}$. Therefore by the Feijer theorem [7] we have $p_{\kappa}=$ $\left|h_{\kappa}\right|^{2}$, where $h_{\kappa}$ is a polynomial of degree $n_{1}+\cdots+n_{\kappa}$, which has no zeros in $\mathbb{D}$. Hence the Fourier spectrum $\operatorname{spec}\left(\sigma_{\kappa}\right)$ of the probability measure $d \sigma_{\kappa}=\left|h_{\kappa}\right|^{2} d m$ lies in the segment $[-\mathcal{N}, \mathcal{N}], \mathcal{N}=n_{1}+\cdots+n_{\kappa}$, and $\sigma_{\kappa}$ is a Szegő measure (see (2.1)).

Not specifying the choice of $n_{\kappa+1}$ yet, we notice that by (2.3) and (2.7) the measure $d \sigma_{\kappa+1}$ is a linear combination of three measures with disjoint Fourier spectra

$$
d \sigma_{\kappa+1}=\left(\bar{\alpha}_{\kappa+1} / 2\right) \bar{\zeta}^{n_{\kappa+1}} d \sigma_{\kappa}+d \sigma_{\kappa}+\left(\alpha_{\kappa+1} / 2\right) \zeta^{n_{\kappa+1}} d \sigma_{\kappa}
$$

Indeed, $\operatorname{spec}\left(\zeta^{n_{\kappa+1}} d \sigma_{\kappa}\right) \subset\left[n_{\kappa+1}-\mathcal{N}, n_{\kappa+1}+\mathcal{N}\right]$ and $\operatorname{spec}\left(\bar{\zeta}_{n_{\kappa+1}} d \sigma_{\kappa}\right) \subset$ $\left[-n_{\kappa+1}-\mathcal{N},-n_{\kappa+1}+\mathscr{N}\right]$. From this we conclude that the Hilbert spaces $L^{2}\left(d \sigma_{\kappa}\right)$ and $L^{2}\left(d \sigma_{\kappa+1}\right)$ (and, consequently, $\left.L^{2}(d \sigma)\right)$ induce identical inner products on the subspace $\mathscr{P}_{n}$ of polynomials in $z$ of degree $n$ for $n<$ $n_{\kappa+1}-\mathcal{N}$.

Recall that the orthogonal polynomials are obtained by the application of the Gram-Schmidt orthogonalization algorithm to the family of monomials $\left(z^{\kappa}\right)_{\kappa \geqslant 0}$. Therefore the polynomials $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}$ in $\mathscr{P}_{n}$ are orthogonal in $L^{2}\left(d \sigma_{\kappa}\right), L^{2}\left(d \sigma_{\kappa+1}\right)$, and in $L^{2}(d \sigma)$ for $n<n_{\kappa+1}-\mathcal{N}$. It follows that our future choice of $n_{\kappa+1}$ cannot influence the values of the Geronimus parameters $a_{n}$ of $\sigma$ with $n \leqslant n_{1}+\cdots+n_{\kappa}=\mathscr{N}<n_{\kappa+1}-\mathcal{N}$.

Keep for a moment the notation $a_{n}$ for the parameters of $\sigma_{\kappa}$. We can apply (2.1) to the Szegő measure $\sigma_{\kappa}$ and find an integer $\mathscr{N}_{\kappa}$, satisfying $\mathscr{N}_{\kappa}>n_{1}+\cdots+n_{\kappa}$ and

$$
\begin{align*}
\exp & \left\{\int_{\mathbb{T}} \log \left(\sigma_{\kappa}^{\prime}\right) d m\right\} \\
& \leqslant \prod_{j=0}^{\mathcal{N}_{\kappa}}\left(1-\left|a_{j}\right|^{2}\right) \leqslant\left(1+\left|\alpha_{\kappa+1}^{2}\right|\right) \exp \left\{\int_{\mathbb{T}} \log \left(\sigma_{\kappa}^{\prime}\right) d m\right\} \tag{2.8}
\end{align*}
$$

We put $n_{\kappa+1}=2 \mathscr{N}_{\kappa}$. Since $n_{\kappa+1}-\mathcal{N}>2 \mathscr{N}_{\kappa}-\mathscr{N}_{\kappa}=\mathscr{N}_{\kappa}$, we obtain that the polynomials $\varphi_{0}, \ldots, \varphi_{\mathcal{N}_{\kappa}}$ are orthogonal both in $L^{2}\left(d \sigma_{\kappa}\right)$ and in $L^{2}(d \sigma)$.

To prove that the measure $\sigma$ obtained satisfied (2.6) we need the following elementary lemma.

Lemma 1. Let $0 \leqslant \alpha \leqslant 1$ and $n$ be an arbitrary integer. Then

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log (1+\alpha \cos n x) d x=\log \frac{1}{1+a^{2}} \tag{2.9}
\end{equation*}
$$

where $a=\alpha\left(1+\sqrt{1-\alpha^{2}}\right)^{-1}$.
Proof. We consider the polynomial $p(z)=\left(1+a z^{n}\right) / \sqrt{1+a^{2}}$, which does not vanish in $\mathbb{D}$, and use the mean-value property of the harmonic function $\log |P(z)|^{2}$.

By (2.8) we have

$$
\begin{aligned}
\prod_{j=\mathcal{N}_{\kappa}+1}^{\mathcal{N}_{\kappa+1}} & \left(1-\left|a_{j}\right|^{2}\right) \\
& =\prod_{j=0}^{\mathcal{N}_{\kappa+1}}\left(1-\left|a_{j}\right|^{2}\right) \cdot \prod_{j=0}^{\mathcal{N}_{\kappa}}\left(1-\left|a_{j}\right|^{2}\right)^{-1} \\
& \geqslant \frac{1}{1+\left|\alpha_{\kappa+1}\right|^{2}} \cdot \exp \left\{\int_{\mathbb{T}} \log \left(\frac{\sigma_{\kappa+1}^{\prime}}{\sigma_{\kappa}^{\prime}}\right) d m\right\} \\
& =\frac{1}{1+\left|\alpha_{\kappa+1}\right|^{2}} \cdot \exp \left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left(1+\left|\alpha_{\kappa+1}\right| \cos \left(n_{\kappa+1} \theta+\varphi_{\kappa+1}\right)\right) d \theta\right\},
\end{aligned}
$$

where $\varphi_{\kappa+1}=\arg \alpha_{\kappa+1}$. By Lemma 1 this implies that

$$
\begin{equation*}
\prod_{j=\mathscr{N}_{k}+1}^{\mathcal{N}_{\kappa+1}}\left(1-\left|a_{j}\right|^{2}\right) \geqslant \frac{1}{\left(1+\left|\alpha_{\kappa+1}^{2}\right|\right)^{2}} . \tag{2.10}
\end{equation*}
$$

It follows that

$$
\sum_{j=\mathcal{N}_{\kappa}+1}^{\mathscr{N}_{\kappa+1}}\left|a_{j}\right|^{2} \leqslant-\sum_{j=\mathcal{N}_{\kappa}+1}^{\mathcal{N}_{\kappa+1}} \log \left(1-\left|a_{j}\right|^{2}\right) \leqslant 2 \log \left(1+\left|\alpha_{\kappa+1}^{2}\right|\right) \leqslant 2\left|\alpha_{\kappa+1}^{2}\right|
$$

and finally for every $p, p>1$,

$$
\begin{aligned}
\sum_{j=\mathcal{N}_{1}+1}^{\infty}\left|a_{j}\right|^{2 p} & =\sum_{\kappa=1}^{\infty}\left(\sum_{j=\mathcal{N}_{\kappa}+1}^{\mathcal{N}_{\kappa+1}}\left|a_{j}\right|^{2 p}\right) \\
& \leqslant \sum_{\kappa=1}^{\infty}\left(\sum_{j=\mathcal{N}_{k}+1}^{\mathcal{N}_{\kappa+1}}\left|a_{j}\right|^{2}\right)^{p} \leqslant 2^{p} \sum_{\kappa=1}^{\infty}\left|\alpha_{\kappa+1}\right|^{2 p},
\end{aligned}
$$

which obviously yields (2.6).
It is easy to estimate the growth of $\left\|\varphi_{n}\right\|_{\infty}=\sup _{\mathbb{T}}\left|\varphi_{n}\right|$ for the singular measures $\sigma$ obtained. It follows from (1.2) that

$$
\left\|\frac{\varphi_{n+1}^{*}}{\varphi_{n}^{*}}-1\right\|_{\infty}=\left|a_{n}\right|(1+o(1)) .
$$

Therefore

$$
\begin{aligned}
\left\|\varphi_{n+1}\right\|_{\infty} & \leqslant \prod_{\kappa=0}^{n}\left\|\frac{\varphi_{\kappa+1}^{*}}{\varphi_{\kappa}^{*}}\right\|_{\infty} \leqslant \prod_{\kappa=0}^{n}\left(1+\mathscr{C} \cdot\left|a_{\kappa}\right|\right) \\
& \leqslant \exp \left\{\mathscr{C} \cdot \sum_{\kappa=0}^{n}\left|a_{\kappa}\right|\right\} \leqslant e^{\mathscr{q}_{q} n^{1 / q}}
\end{aligned}
$$

for every $q, q<2$, by the Hölder inequality.

It follows from (2.6) by the Geronimus theorem that the Schur parameters $\left(\gamma_{n}\right)_{n \geqslant 0}$ of the inner function $f$ in (1.5) satisfy

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|\gamma_{n}\right|^{p}<+\infty \tag{2.11}
\end{equation*}
$$

for every $p, p>2$.
Corollary 1. There exists a Blaschke product with the Schur parameters satisfying (2.11) for every $p, p>2$.

Proof. For $\alpha,|\alpha|<1$, we define the Möbius transform $\tau_{\alpha}(z)$ of $\mathbb{D}$ by $\tau_{\alpha}(z)=(z-\alpha) \cdot(1-\bar{\alpha} z)^{-1}$. By the Frostman theorem [1] for all $\alpha,|\alpha|<1$, except possibly for a set of logarithmic capacity zero the function $f_{\alpha}=\tau_{\alpha} \circ f$ is a Blaschke product. Put $\lambda_{\alpha}=\left(1-\alpha \bar{\gamma}_{0}\right)\left(1-\bar{\alpha} \gamma_{0}\right)^{-1}$. Clearly $\left|\lambda_{\alpha}\right|=1$ and easy algebra shows that

$$
f_{\alpha}(z)=\frac{\theta \tau_{\alpha}\left(\gamma_{0}\right)+z \lambda_{\alpha} f_{1}(z)}{1+\overline{\theta \tau_{\alpha}\left(\gamma_{0}\right)} \cdot z \lambda_{\alpha} f_{1}(z)} .
$$

Therefore the Schur parameters of $f_{\alpha}$ are $\theta \tau_{\alpha}\left(\gamma_{0}\right), \lambda_{\alpha} \gamma_{1}, \lambda_{\alpha} \gamma_{2}, \ldots, \lambda_{\alpha} \gamma_{n}, \ldots$.
In the conclusion we notice that some information on the behavior of the Schur parameters of general inner functions can be captured from the following result of Holland [5].

Theorem. Let $\sigma$ be a singular probability measure on $\mathbb{T}$ and let $f$ be an inner function satisfying (1.3). Then

$$
\int_{\mathbb{T}}\left|1-\sum_{\kappa=0}^{n-1} \hat{f}(\kappa) z^{\kappa+1}\right|^{2} d \sigma=\sum_{\kappa=n}^{\infty}|\hat{f}(\kappa)|^{2} .
$$

Since $k_{n}^{-2}=\inf \left\{\int_{\mathbb{T}}\left|p_{n}\right|^{2} d \sigma: p_{n}(0)=1, p_{n} \in \mathscr{P}_{n}\right\}$ we obtain

$$
\begin{equation*}
\prod_{\kappa=0}^{n-1}\left(1-\left|\gamma_{\kappa}\right|^{2}\right)=k_{n}^{-2} \leqslant \sum_{\kappa=n}^{\infty}|\hat{f}(\kappa)|^{2}, \tag{2.12}
\end{equation*}
$$

which again shows that $\sum_{n=0}^{\infty}\left|\gamma_{n}\right|^{2}=+\infty$ for an inner function $f$.

## REFERENCES

1. J. B. Garnett, "Bounded Analytic Functions," Academic Press, New York, 1981.
2. Ya. L. Geronimus, "Polynomials Orthogonal on the Unit Circle and on the Segment," FM, Moscow, 1958.
3. Ya. L. Geronimus, O polinomakh ortogonal'nykh na kruge i trigonometricheskoi probleme momentov i ob associirovannykh s neyu funkciyakh tipa Carotheodory i Schur'a, Mat. Sb. 15, No. 1 (1944), 99-130.
4. Ya. L. Geronimus, Polinomy ortogonal'nye na Kruge i ikh prilozheniya, Zap. Mat. Mekh. Khar'kovskogo Mat. Obshch. Ser. 419 (1948), 35-120.
5. F. Holland, Another proof of Szegő's theorem for a singular measure, Proc. Amer. Math. Soc. 45, No. 2 (1974), 311-312.
6. D. S. Lubinsky, Singularly continuous measures in Nevai's class M, Proc. Amer. Math. Soc. 111, No. 2 (1991), 413-420.
7. G. Szegő, "Orthogonal Polynomials," Colloquium Publications, Vol. 23, Amer. Math. soc., Providence, RI, 1939.
8. A. Zygmund, "Trigonometric Series," Cambridge Univ. Press, London/New York, 1968.
