A Singular Riesz Product in the Nevai Class and Inner Functions with the Schur Parameters in $\bigcap_{p>2} I^p$

Sergei Khrushchev

Dolgoozernaya ul. 6, Block 1, Apt. 116, 197373 St. Petersburg, Russia

Communicated by Paul Nevai

Received September 14, 1998; accepted June 2, 2000; published online January 18, 2001

TO THE MEMORY OF TEACHER, FRIEND, AND CO-AUTHOR, STANISLAV ALEXANDROVICH VINOGRADOV

There exist singular Riesz products $d\sigma = \prod_{\kappa=1}^{\infty} (1 + \operatorname{Re}(\alpha_{\kappa} \zeta^{n_{\kappa}}))$ on the unit circle \mathbb{T} with the parameters $(a_n)_{n \ge 0}$ of orthogonal polynomials in $L^2(d\sigma)$ satisfying $\sum_{n=0}^{\infty} |a_n|^p < +\infty$ for every p, p > 2. The Schur parameters of the inner factor of the Cauchy integral $\int_{\mathbb{T}} (\zeta - z)^{-1} d\sigma(\zeta)$, σ being such a Riesz product, belong to $\bigcap_{p>2} l^p$. \mathbb{C} 2001 Academic Press

Key Words: Schur parameters; orthogonal polynomials; Blaschke product; Riesz products.

1. Given a probability measure σ on $\mathbb{T} = \{\zeta : |\zeta| = 1\}$ the orthogonal polynomials $(\varphi_n)_{n \ge 0}$ in $L^2(d\sigma)$ are defined by

$$\varphi_n(z) = k_n \cdot z^n + \dots + \varphi_n(0), \qquad k_n > 0,$$

$$\int_{\mathbb{T}} \varphi_i \bar{\varphi}_j \, d\sigma = \delta_{ij}.$$
(1.1)

For a polynomial p of degree n in z we put $p^*(z) = z^n \overline{p(1/\overline{z})}$. It follows from the recurrence formulae (see [7])

$$k_n \varphi_{n+1} = k_{n+1} z \varphi_n + \varphi_{n+1}(0) \varphi_n^*$$

$$k_n \varphi_{n+1}^* = k_{n+1} \varphi_n^* + \overline{\varphi_{n+1}(0)} z \varphi_n$$
(1.2)

that the orthogonal polynomials are uniquely determined by their parameters $a_n = -\overline{\varphi_{n+1}(0)}/k_{n+1}$, $n = 0, 1, \dots$ We call $(a_n)_{n \ge 0}$ the Geronimus parameters of σ .

 (\mathbf{AP})

The Herglotz formula

$$\int_{\mathbb{T}} \frac{\zeta + z}{\zeta - z} \, d\sigma(\zeta) = \frac{1 + zf}{1 - zf}, \qquad |z| < 1, \tag{1.3}$$

establishes a one-to-one correspondence between probability measures on \mathbb{T} and contractive holomorphic functions in the unit disc $\mathbb{D} = \{z: |z| < 1\}$, i.e., the points of the unit ball \mathscr{B} of the Hardy algebra H^{∞} .

For $f, f \in \mathcal{B}$, the Schur algorithm is defined by

$$f(z) \stackrel{\text{def}}{=} f_0(z) = \frac{zf_1(z) + \gamma_0}{1 + \bar{\gamma}_0 zf_1(z)}; \dots f_n(z) = \frac{zf_{n+1}(z) + \gamma_n}{1 + \bar{\gamma}_n zf_{n+1}(z)}; \dots$$
(1.4)

If f is not a finite Blaschke product then the sequence $\gamma_n = f_n(0)$, n = 0, 1, ..., of the Schur parameters of f is infinite.

THEOREM (Geronimus [3,4]). The Geronimus parameters of a probability measure σ on \mathbb{T} coincide with the Schur parameters of the function frelated with σ by (1.3).

It is clear from (1.3) (take the real parts) and from Fatou's theorem on nontangential limits that f is an inner function if and only if σ is a singular measure. In addition $(1-zf)^{-1}$ is an outer function for every f in \mathcal{B} . Subtracting 1 from the both sides of (1.3), we obtain that

$$\int_{\mathbb{T}} \frac{d\sigma(\zeta)}{\zeta - z} = f(z) \cdot (1 - zf)^{-1}, \qquad |z| < 1,$$
(1.5)

is the canonical Nevanlinna factorization of the Cauchy integral of σ into the product of the inner function f and the outer function $(1-zf)^{-1}$.

2. The first example of a singular measure σ with $\lim_n a_n = 0$ was constructed by D. Lubinsky [6]. In the present paper we show that the Nevai class contains also singular Riesz products which are very close to measures satisfying the Szegő condition

$$\prod_{n=0}^{\infty} (1 - |a_n|^2) = \exp\left\{\int_{\mathbb{T}} \log(\sigma') \, dm\right\}$$

$$= \exp\left\{\int_{\mathbb{T}} \log(1 - |f|^2) \, dm\right\} > 0$$
(2.1)

(see [2]). Notice that, by (2.1) *f* cannot be an inner function if $\sum_{n=0}^{\infty} |\gamma_n|^2 < +\infty$.

We recall (see [8]) that a Riesz product is a probability measure σ on \mathbb{T} with the formal Fourier series defined by the infinite product

$$d\sigma \sim \prod_{\kappa=1}^{\infty} (1 + \operatorname{Re}(\alpha_{\kappa} \zeta^{n_{\kappa}})), \qquad (2.2)$$

where $0 < |\alpha_{\kappa}| \le 1, \ \kappa = 1, 2,$

In what follows we assume that

$$n_{\kappa+1} > 2(n_{\kappa} + n_{\kappa-1} + \dots + n_1),$$
 (2.3)

$$\sum_{\kappa=1}^{\infty} |\alpha_{\kappa}|^{2p} < +\infty \quad \text{for every} \quad p, \, p > 1, \tag{2.4}$$

$$\sum_{\kappa=1}^{\infty} |\alpha_k|^2 = +\infty.$$
(2.5)

Condition (2.3) says that every non-zero Fourier coefficient $\hat{\sigma}(\kappa)$, $\kappa \neq 0$, is a product of a finite number of multipliers $\alpha_j/2$ with different indices *j*. This together with (2.4) implies that $(\hat{\sigma}(\kappa))_{\kappa \in \mathbb{Z}} \in \bigcap_{p>2} l^p$. Condition (2.5) implies that σ is a singular measure (see [8]).

THEOREM 1. There exists a singular Riesz product σ with the Geronimus parameters $(a_n)_{n\geq 0}$ satisfying

$$\sum_{n=0}^{\infty} |a_n|^p < +\infty \tag{2.6}$$

for every p, p > 2.

Proof. We construct the required measure in the class of Riesz products σ , satisfying (2.3)–(2.5), by specifying the growth of n_{κ} .

Suppose that the numbers $n_1, ..., n_{\kappa}$ are already choosen. The partial product

$$p_{\kappa}(\zeta) = \prod_{j=1}^{\kappa} (1 + \operatorname{Re}(\alpha_{j} \zeta^{n_{j}})), \qquad \zeta \in \mathbb{T}$$
(2.7)

is non-negative on \mathbb{T} . Therefore by the Feijer theorem [7] we have $p_{\kappa} = |h_{\kappa}|^2$, where h_{κ} is a polynomial of degree $n_1 + \cdots + n_{\kappa}$, which has no zeros in \mathbb{D} . Hence the Fourier spectrum spec (σ_{κ}) of the probability measure $d\sigma_{\kappa} = |h_{\kappa}|^2 dm$ lies in the segment $[-\mathcal{N}, \mathcal{N}]$, $\mathcal{N} = n_1 + \cdots + n_{\kappa}$, and σ_{κ} is a Szegő measure (see (2.1)).

Not specifying the choice of $n_{\kappa+1}$ yet, we notice that by (2.3) and (2.7) the measure $d\sigma_{\kappa+1}$ is a linear combination of three measures with disjoint Fourier spectra

$$d\sigma_{\kappa+1} = \left(\bar{\alpha}_{\kappa+1}/2\right) \zeta^{n_{\kappa+1}} d\sigma_{\kappa} + d\sigma_{\kappa} + \left(\alpha_{\kappa+1}/2\right) \zeta^{n_{\kappa+1}} d\sigma_{\kappa}$$

Indeed, spec($\zeta^{n_{\kappa+1}} d\sigma_{\kappa}$) $\subset [n_{\kappa+1} - \mathcal{N}, n_{\kappa+1} + \mathcal{N}]$ and spec($\overline{\zeta}^{n_{\kappa+1}} d\sigma_{\kappa}$) $\subset [-n_{\kappa+1} - \mathcal{N}, -n_{\kappa+1} + \mathcal{N}]$. From this we conclude that the Hilbert spaces $L^2(d\sigma_{\kappa})$ and $L^2(d\sigma_{\kappa+1})$ (and, consequently, $L^2(d\sigma)$) induce identical inner products on the subspace \mathcal{P}_n of polynomials in *z* of degree *n* for $n < n_{\kappa+1} - \mathcal{N}$.

Recall that the orthogonal polynomials are obtained by the application of the Gram-Schmidt orthogonalization algorithm to the family of monomials $(z^{\kappa})_{\kappa \ge 0}$. Therefore the polynomials φ_0 , φ_1 , ..., φ_n in \mathscr{P}_n are orthogonal in $L^2(d\sigma_{\kappa})$, $L^2(d\sigma_{\kappa+1})$, and in $L^2(d\sigma)$ for $n < n_{\kappa+1} - \mathscr{N}$. It follows that our future choice of $n_{\kappa+1}$ cannot influence the values of the Geronimus parameters a_n of σ with $n \le n_1 + \cdots + n_{\kappa} = \mathscr{N} < n_{\kappa+1} - \mathscr{N}$.

Keep for a moment the notation a_n for the parameters of σ_{κ} . We can apply (2.1) to the Szegő measure σ_{κ} and find an integer \mathcal{N}_{κ} , satisfying $\mathcal{N}_{\kappa} > n_1 + \cdots + n_{\kappa}$ and

$$\exp\left\{\int_{\mathbb{T}}\log(\sigma_{\kappa}')\,dm\right\}$$

$$\leqslant \prod_{j=0}^{\mathcal{N}_{\kappa}}\left(1-|a_{j}|^{2}\right)\leqslant\left(1+|\alpha_{\kappa+1}^{2}|\right)\exp\left\{\int_{\mathbb{T}}\log(\sigma_{\kappa}')\,dm\right\}.$$
(2.8)

We put $n_{\kappa+1} = 2\mathcal{N}_{\kappa}$. Since $n_{\kappa+1} - \mathcal{N} > 2\mathcal{N}_{\kappa} - \mathcal{N}_{\kappa} = \mathcal{N}_{\kappa}$, we obtain that the polynomials $\varphi_0, ..., \varphi_{\mathcal{N}_{\kappa}}$ are orthogonal both in $L^2(d\sigma_{\kappa})$ and in $L^2(d\sigma)$.

To prove that the measure σ obtained satisfied (2.6) we need the following elementary lemma.

LEMMA 1. Let $0 \le \alpha \le 1$ and n be an arbitrary integer. Then

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \log(1 + \alpha \cos nx) \, dx = \log \frac{1}{1 + a^2},\tag{2.9}$$

where $a = \alpha (1 + \sqrt{1 - \alpha^2})^{-1}$.

Proof. We consider the polynomial $p(z) = (1 + az^n)/\sqrt{1 + a^2}$, which does not vanish in \mathbb{D} , and use the mean-value property of the harmonic function log $|P(z)|^2$.

By (2.8) we have

$$\begin{split} &\prod_{j=\mathcal{N}_{\kappa+1}}^{\mathcal{N}_{\kappa+1}} (1-|a_{j}|^{2}) \\ &= \prod_{j=0}^{\mathcal{N}_{\kappa+1}} (1-|a_{j}|^{2}) \cdot \prod_{j=0}^{\mathcal{N}_{\kappa}} (1-|a_{j}|^{2})^{-1} \\ &\geqslant &\frac{1}{1+|\alpha_{\kappa+1}|^{2}} \cdot \exp\left\{ \int_{\mathbb{T}} \log\left(\frac{\sigma'_{\kappa+1}}{\sigma'_{\kappa}}\right) dm \right\} \\ &= &\frac{1}{1+|\alpha_{\kappa+1}|^{2}} \cdot \exp\left\{ \frac{1}{2\pi} \int_{-\pi}^{\pi} \log(1+|\alpha_{\kappa+1}|\cos(n_{\kappa+1}\theta+\varphi_{\kappa+1})) d\theta \right\}, \end{split}$$

where $\varphi_{\kappa+1} = \arg \alpha_{\kappa+1}$. By Lemma 1 this implies that

$$\prod_{j=\mathcal{N}_{\kappa}+1}^{\mathcal{N}_{\kappa}+1} (1-|a_{j}|^{2}) \ge \frac{1}{(1+|\alpha_{\kappa+1}^{2}|)^{2}}.$$
(2.10)

It follows that

$$\sum_{j=\mathcal{N}_{\kappa}+1}^{\mathcal{N}_{\kappa}+1} |a_{j}|^{2} \leqslant -\sum_{j=\mathcal{N}_{\kappa}+1}^{\mathcal{N}_{\kappa}+1} \log(1-|a_{j}|^{2}) \leqslant 2\log(1+|\alpha_{\kappa+1}^{2}|) \leqslant 2|\alpha_{\kappa+1}^{2}|$$

and finally for every p, p > 1,

$$\sum_{j=\mathcal{N}_{1}+1}^{\infty} |a_{j}|^{2p} = \sum_{\kappa=1}^{\infty} \left(\sum_{j=\mathcal{N}_{\kappa}+1}^{\mathcal{N}_{\kappa}+1} |a_{j}|^{2p} \right)$$
$$\leq \sum_{\kappa=1}^{\infty} \left(\sum_{j=\mathcal{N}_{\kappa}+1}^{\mathcal{N}_{\kappa}+1} |a_{j}|^{2} \right)^{p} \leq 2^{p} \sum_{\kappa=1}^{\infty} |\alpha_{\kappa+1}|^{2p},$$

which obviously yields (2.6).

It is easy to estimate the growth of $\|\varphi_n\|_{\infty} = \sup_{\mathbb{T}} |\varphi_n|$ for the singular measures σ obtained. It follows from (1.2) that

$$\left\|\frac{\varphi_{n+1}^*}{\varphi_n^*} - 1\right\|_{\infty} = |a_n| \ (1 + o(1)).$$

Therefore

$$\begin{split} \|\varphi_{n+1}\|_{\infty} &\leqslant \prod_{\kappa=0}^{n} \left\|\frac{\varphi_{\kappa+1}^{*}}{\varphi_{\kappa}^{*}}\right\|_{\infty} \leqslant \prod_{\kappa=0}^{n} \left(1 + \mathscr{C} \cdot |a_{\kappa}|\right) \\ &\leqslant \exp\left\{\mathscr{C} \cdot \sum_{\kappa=0}^{n} |a_{\kappa}|\right\} \leqslant e^{\mathscr{C}_{q} n^{1/q}} \end{split}$$

for every q, q < 2, by the Hölder inequality.

It follows from (2.6) by the Geronimus theorem that the Schur parameters $(\gamma_n)_{n\geq 0}$ of the inner function f in (1.5) satisfy

$$\sum_{n=0}^{\infty} |\gamma_n|^p < +\infty \tag{2.11}$$

for every p, p > 2.

COROLLARY 1. There exists a Blaschke product with the Schur parameters satisfying (2.11) for every p, p > 2.

Proof. For α , $|\alpha| < 1$, we define the Möbius transform $\tau_{\alpha}(z)$ of \mathbb{D} by $\tau_{\alpha}(z) = (z - \alpha) \cdot (1 - \bar{\alpha}z)^{-1}$. By the Frostman theorem [1] for all α , $|\alpha| < 1$, except possibly for a set of logarithmic capacity zero the function $f_{\alpha} = \tau_{\alpha} \circ f$ is a Blaschke product. Put $\lambda_{\alpha} = (1 - \alpha \bar{\gamma}_0)(1 - \bar{\alpha}\gamma_0)^{-1}$. Clearly $|\lambda_{\alpha}| = 1$ and easy algebra shows that

$$f_{\alpha}(z) = \frac{\theta \tau_{\alpha}(\gamma_0) + z \lambda_{\alpha} f_1(z)}{1 + \theta \tau_{\alpha}(\gamma_0) \cdot z \lambda_{\alpha} f_1(z)}.$$

Therefore the Schur parameters of f_{α} are $\theta \tau_{\alpha}(\gamma_0)$, $\lambda_{\alpha}\gamma_1$, $\lambda_{\alpha}\gamma_2$, ..., $\lambda_{\alpha}\gamma_n$,

In the conclusion we notice that some information on the behavior of the Schur parameters of general inner functions can be captured from the following result of Holland [5].

THEOREM. Let σ be a singular probability measure on \mathbb{T} and let f be an inner function satisfying (1.3). Then

$$\int_{\mathbb{T}} \left| 1 - \sum_{\kappa=0}^{n-1} \hat{f}(\kappa) \, z^{\kappa+1} \right|^2 d\sigma = \sum_{\kappa=n}^{\infty} |\hat{f}(\kappa)|^2.$$

Since $k_n^{-2} = \inf\{\int_{\mathbb{T}} |p_n|^2 d\sigma: p_n(0) = 1, p_n \in \mathscr{P}_n\}$ we obtain

$$\prod_{\kappa=0}^{n-1} (1 - |\gamma_{\kappa}|^2) = k_n^{-2} \leqslant \sum_{\kappa=n}^{\infty} |\hat{f}(\kappa)|^2,$$
(2.12)

which again shows that $\sum_{n=0}^{\infty} |\gamma_n|^2 = +\infty$ for an inner function f.

REFERENCES

- 1. J. B. Garnett, "Bounded Analytic Functions," Academic Press, New York, 1981.
- Ya. L. Geronimus, "Polynomials Orthogonal on the Unit Circle and on the Segment," FM, Moscow, 1958.

- Ya. L. Geronimus, O polinomakh ortogonal'nykh na kruge i trigonometricheskoi probleme momentov i ob associirovannykh s neyu funkciyakh tipa Carotheodory i Schur'a, *Mat. Sb.* 15, No. 1 (1944), 99–130.
- Ya. L. Geronimus, Polinomy ortogonal'nye na Kruge i ikh prilozheniya, Zap. Mat. Mekh. Khar'kovskogo Mat. Obshch. Ser. 4 19 (1948), 35–120.
- F. Holland, Another proof of Szegő's theorem for a singular measure, *Proc. Amer. Math. Soc.* 45, No. 2 (1974), 311–312.
- D. S. Lubinsky, Singularly continuous measures in Nevai's class M, Proc. Amer. Math. Soc. 111, No. 2 (1991), 413–420.
- G. Szegő, "Orthogonal Polynomials," Colloquium Publications, Vol. 23, Amer. Math. soc., Providence, RI, 1939.
- 8. A. Zygmund, "Trigonometric Series," Cambridge Univ. Press, London/New York, 1968.