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There exist singular Riesz products do =[]7_; (1 + Re(a,.(")) on the unit circle
T with the parameters (a,),o of orthogonal polynomials in L*(do) satisfying
> la,l? < 4+ for every p, p>2. The Schur parameters of the inner factor of
the Cauchy integral | ({—z)7'do({), o being such a Riesz product, belong to
Np>2 . © 2001 Academic Press
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1. Given a probability measure ¢ on T={{:|{|=1} the ortho-
gonal polynomials (¢,),s, in L*(do) are defined by

qﬂn(Z)an'Zn-i- +(pn(0)’ kn>09

(1.1)
LT 0.0, dor =20,

For a polynomial p of degree n in z we put p*(z)==z"p(1/z). It follows
from the recurrence formulae (see [7])

kn§0n+1 =kn+12(pn+§0n+1(0) gp;;k

kn(p:+l :kn+1(ﬂ:lk + (pn+l(0) ZPn

(1.2)

that the orthogonal polynomials are uniquely determined by their param-

eters a,=—¢,,,(0)/k,.,, n=0,1,... We call (a,),>, the Geronimus
parameters of o.
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The Herglotz formula

C—Zdo-(é:) - 1 —Zf’

[ S o=t < (13)
.

establishes a one-to-one correspondence between probability measures on
T and contractive holomorphic functions in the unit disc D = {z: |z| <1},
i.e., the points of the unit ball 4 of the Hardy algebra H*.

For f, f € %, the Schur algorithm is defined by

Zfl +)’0 o fi(z) = Zfwi1(2) + 7, .

RS v e e

(1.4)

If f is not a finite Blaschke product then the sequence y,= £,(0), n=0, 1, ..,
of the Schur parameters of f is infinite.

THEOREM (Geronimus [3,4]). The Geronimus parameters of a prob-

ability measure o on T coincide with the Schur parameters of the function f
related with o by (1.3).

It is clear from (1.3) (take the real parts) and from Fatou’s theorem on
nontangential limits that f'is an inner function if and only if ¢ is a singular
measure. In addition (1 —zf)~! is an outer function for every f in 4.
Subtracting 1 from the both sides of (1.3), we obtain that

da({)
T C—Z

=fz)-(1=z)~",  |zl<L, (15)

is the canonical Nevanlinna factorization of the Cauchy integral of ¢ into
the product of the inner function f and the outer function (1 —zf)~

2. The first example of a singular measure ¢ with lim, ¢, =0 was
constructed by D. Lubinsky [6]. In the present paper we show that the
Nevai class contains also singular Riesz products which are very close to
measures satisfying the Szegé condition

o0

[1 (1= la, ) =exp { [ togio") dn|

(2.1)
—exp “ log(1—|f]?) dm} >0
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(see [2]). Notice that, by (2.1) f cannot be an inner function if 3*_, |7,|?
< + o0.

We recall (see [8]) that a Riesz product is a probability measure ¢ on
T with the formal Fourier series defined by the infinite product

o)

do~ T (1+Re(a, (™)), (2.2)

k=1

where 0 <o, | <1, k=1,2,...
In what follows we assume that

N1 >2(mc+n,e_1+ - +ny), (2.3)
Yo PP < + o0 forevery p, p>1, (2.4)
k=1
z log |2 = + o0. (2.5)
k=1

Condition (2.3) says that every non-zero Fourier coefficient é(x),  #0, is
a product of a finite number of multipliers «;/2 with different indices j. This
together with (2.4) implies that (6(x)).cz €(),~2#. Condition (2.5)
implies that ¢ is a singular measure (see [8]).

THEOREM 1. There exists a singular Riesz product o with the Geronimus
parameters (a,), o satisfying

Y Ja,|? < + oo (2.6)

n=0

for every p, p>2.
Proof. We construct the required measure in the class of Riesz products
o, satisfying (2.3)—(2.5), by specifying the growth of n,..

Suppose that the numbers #n, .., n, are already choosen. The partial
product

—=

pO=1[ (1 +Re(;{),  LeT (2.7)

j=1
is non-negative on T. Therefore by the Feijer theorem [7] we have p, =
|h,|% where &, is a polynomial of degree n; + --- +n,, which has no zeros
in D. Hence the Fourier spectrum spec(o,) of the probability measure
do, = |h,|* dm lies in the segment [ —A", /'], /" =n,+ --- +n,, and o,
is a Szegd measure (see (2.1)).
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Not specifying the choice of n, , ; yet, we notice that by (2.3) and (2.7)
the measure do, . is a linear combination of three measures with disjoint
Fourier spectra

do_x+1 = (OZK+1/2) 5"x+l dax+do-x+ (O(K+l/2) é/nK-H dgk'

Indeed, spec((™*'do,)c e,y — N ey +.A] and spec({™+'do,)c
[—nei1— A —ne1+A7]. From this we conclude that the Hilbert
spaces L*(do,) and L*(do, ., ) (and, consequently, L*(do)) induce identical
inner products on the subspace Z, of polynomials in z of degree n for n<
Ny y1 — N

Recall that the orthogonal polynomials are obtained by the application
of the Gram-Schmidt orthogonalization algorithm to the family of
monomials (z),-,. Therefore the polynomials ¢4, ¢, .., ¢, In %, are
orthogonal in L*do,), L*(do,,,), and in L*(do) for n<n, ,— A" It
follows that our future choice of n, ., cannot influence the values of the
Geronimus parameters a, of ¢ with n<n;+ --- +n.=A4"<n, ., — N

Keep for a moment the notation «, for the parameters of o,. We can
apply (2.1) to the Szegd measure o, and find an integer ./, satisfying
Ne>ny+ -+ +n, and

exp {J log(a’.) dm}

K

(2.8)

—5

<TL0-loP1< 0+ 122, Dexp { [ togiol) .

0

J

We put n,. . =24,. Since n,. ;. — N >2N,, — N, = N,, we obtain that the
polynomials ¢, .., ¢ - are orthogonal both in L*(do,) and in L*(do).

To prove that the measure o obtained satisfied (2.6) we need the follow-
ing elementary lemma.

LEMMA 1. Let 0<a<1 and n be an arbitrary integer. Then

2n 1 +a*

where a=o(1 +./1 —a?)~ L.

Proof. We consider the polynomial p(z)=(1+az")//1+a? which
does not vanish in D, and use the mean-value property of the harmonic
function log |P(z)|% |

1 (= 1
—j log(1 + a cos nx) dx =log —— (2.9)
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By (2.8) we have

N e+1

[T (1—la?)

J=Ne+1

=/Vx+l Nk
=[] A—=la;»)- ] (1 —la;1>)~"
Jj=0 Jj=0

1 g
> . 1 Zr+l d
Tl 2 07 {L °g< 7, > ’"}

1 1 =
=m'exp {27[ j_nlog(l + lotye 1] cO8(ny 10+ @1 1)) de},

where ¢, . =argo, .. By Lemma 1 this implies that

Nt |
j=g+l(1f|a,|2)>m. (2.10)
It follows that
Nl Nt
J‘=/§;+1 o< _j=/;¢+1 log(1 —a;|*) < 2log(l + a1 1) S 2o |

and finally for every p, p > 1,

S =3 (3 )

j=N1+1 k=1 \j=Ar+1

O Nier1 ) P O )
<3 (3 1aP) <2 %
k=1 \j K

=N+ =1
which obviously yields (2.6). ||

It is easy to estimate the growth of | ¢, ||, =supy|¢,| for the singular
measures ¢ obtained. It follows from (1.2) that

. =la,| (1+o(1)).

(ﬂj:+1_1

[eo)

Therefore

n

H(pn+1Hoo < 1_[

k=0

n
< exp {(g . Z |ax|} ge‘gqnl/q

k=0

%
P +1

(p*

<[] 1+%-la.l)
k=0

oo

for every g, ¢ <2, by the Hoélder inequality.
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It follows from (2.6) by the Geronimus theorem that the Schur
parameters (y,),=o of the inner function fin (1.5) satisfy

Y Ipal? <40 (2.11)

n=0

for every p, p>2.

COROLLARY 1. There exists a Blaschke product with the Schur
parameters satisfying (2.11) for every p, p > 2.

Proof. For a, |a| <1, we define the Mobius transform 7,(z) of D by
1(z)=(z—a)-(1 —az)~ L. By the Frostman theorem [1] for all a, |a| <1,
except possibly for a set of logarithmic capacity zero the function f, =7, of
is a Blaschke product. Put A, = (1 —aj,)(1 —ay,) ~L Clearly |4,|=1 and
easy algebra shows that

Oto(yo) + 220 /1(2)
L+ 01,(70) - 220 f1(2)

Therefore the Schur parameters of £, are 0t,(vo), AeV1> AaV2s oo 2aVns - |

Julz)=

In the conclusion we notice that some information on the behavior of the
Schur parameters of general inner functions can be captured from the
following result of Holland [5].

THEOREM. Let o be a singular probability measure on T and let f be an
inner function satisfying (1.3). Then

Since k,, > =inf{|; |p,|* do: p,(0)=1, p, €2} we obtain

ﬁ 1= lp.l?) = f (2.12)

which again shows that 3° |7, |*= + oo for an inner function f.
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